Introduction to generalized functions Tracking the singularities

Shantanu Dave

University of Vienna

Texas Topology and Geometry Conference

Outline

Motivation

Operators with nosmooth coefficients

Distributions and linear PDEs

Generalized Functions

Multiplication of non-smooth data and nonlinearity The Regularity of Solutions Applications

Domain of operators

▶ M_{ρ} Multiplication by $\rho \in L^{\infty}(\mathbb{R})$

• Question What is $M_{\rho}(i\frac{d}{dx})$?

Domain of operators

▶ M_{ρ} Multiplication by $\rho \in L^{\infty}(\mathbb{R})$

- Question What is $M_{\rho}(i\frac{d}{dx})$?
- M_{ρ} does not preserve Domain $i\frac{d}{dx}$.

Distributional kernals

▶ Composing the two operators $T = M_{\rho} \circ i \frac{d}{dx}$

$$\begin{array}{ccc}
\mathcal{C}_{c}^{\infty}(\mathbb{R}) & \xrightarrow{M_{\rho}} & \mathcal{E}'(\mathbb{R}) \\
\downarrow i \frac{d}{dx} & & \uparrow & \uparrow \\
\mathcal{C}_{c}^{\infty}(\mathbb{R}) & & & \\
\end{array}$$

Distributional kernals

lacktriangle Composing the two operators $T=M_{
ho}\circ irac{d}{dx}$

$$\begin{array}{ccc}
\mathcal{C}_{c}^{\infty}(\mathbb{R}) & \xrightarrow{M_{\rho}} \mathcal{E}'(\mathbb{R}) \\
\downarrow i \frac{d}{dx} & \uparrow & \uparrow \\
\mathcal{C}_{c}^{\infty}(\mathbb{R}) & & \downarrow \\
\end{array}$$

▶ Schwartz kernel Theorem: $\ker(T) \in D'(\mathbb{R} \times \mathbb{R})$

Distributional kernals

▶ Composing the two operators $T = M_{\rho} \circ i \frac{d}{dx}$

$$\begin{array}{c|c}
\mathcal{C}_{\mathcal{C}}^{\infty}(\mathbb{R}) & \xrightarrow{M_{\rho}} \mathcal{E}'(\mathbb{R}) \\
\downarrow i \frac{d}{dx} & \uparrow & \uparrow \\
\mathcal{C}_{\mathcal{C}}^{\infty}(\mathbb{R}) & & \\
\end{array}$$

- ▶ Schwartz kernel Theorem: $\ker(T) \in D'(\mathbb{R} \times \mathbb{R})$
- Singularities of ker(T) contain much information on T

Distributions

D a PDO on M closed Riemannian manifold.

▶ *D* unbounded operator on $\mathcal{H} = L^2(M)$.

Distributions

D a PDO on M closed Riemannian manifold.

▶ *D* unbounded operator on $\mathcal{H} = L^2(M)$.

Sobolov spaces $H^k(M)$:

- Common Domain for all order k operators.
- ▶ Maximal (or Minimal) domain of order *k* self-adjoint elliptic/invertible *D*.

$$||u||_k := ||u||_{L^2(M)} + |||D|u||_{L^2(M)}$$

Distributions

D a PDO on M closed Riemannian manifold.

▶ *D* unbounded operator on $\mathcal{H} = L^2(M)$.

Sobolov spaces $H^k(M)$:

- ▶ Common Domain for all order *k* operators.
- Maximal (or Minimal) domain of order k self-adjoint elliptic/invertible D.

$$||u||_k := ||u||_{L^2(M)} + |||D|u||_{L^2(M)}$$

Frechét space

$$\mathcal{C}^{\infty}(M) := \bigcap_{k} H^{k}(M)$$

Distributions are the dual $D'(M) := C^{\infty}(M)'$

Ellipticity

- ▶ $D: C^{\infty}(M) \to C^{\infty}(M)$ Local and Continuous.
- Symbol os an operator="highest order part"

Ellipticity

- ▶ $D: C^{\infty}(M) \to C^{\infty}(M)$ Local and Continuous.
- Symbol os an operator="highest order part"
- Symbol of an order 1 Operator D:
 - $(x,\xi) \in T^*M$ and $df = (x,\xi)$

D elliptic $\iff \sigma_D(x,\xi)$ invertible

Ellipticity

- ▶ $D: C^{\infty}(M) \to C^{\infty}(M)$ Local and Continuous.
- Symbol os an operator="highest order part"
- Symbol of an order 1 Operator D:
 - $(x,\xi) \in T^*M$ and $df = (x,\xi)$

D elliptic
$$\iff \sigma_D(x,\xi)$$
 invertible

► $E \to M$ a Hermitian vector bundle $D: \Gamma^{\infty}(M:E) \to \Gamma^{\infty}(M:E)$

D Laplace operator on M

▶ Exist ϕ_n , λ_n

$$D\phi_n = \lambda_n \phi_n \quad \phi_n \quad \text{orthonormal basis for } L^2(M)$$

D Laplace operator on M

ightharpoonup Exist ϕ_n, λ_n

$$D\phi_n = \lambda_n \phi_n \quad \phi_n \quad \text{orthonormal basis for } L^2(M)$$

• λ_n have finite multiplicity

D Laplace operator on M

▶ Exist ϕ_n , λ_n

$$D\phi_n = \lambda_n \phi_n \quad \phi_n \quad \text{orthonormal basis for } L^2(M)$$

- \triangleright λ_n have finite multiplicity
- Order $0 \le \lambda_1 \le \lambda_2 \le \dots$

$$N_D(\lambda) := \#\{\lambda_i | \lambda_i \leq \lambda\}$$

D Laplace operator on M

ightharpoonup Exist ϕ_n, λ_n

$$D\phi_n = \lambda_n \phi_n \quad \phi_n \quad \text{orthonormal basis for } L^2(M)$$

- \triangleright λ_n have finite multiplicity
- Order $0 \le \lambda_1 \le \lambda_2 \le \dots$

$$N_D(\lambda) := \#\{\lambda_i | \lambda_i \leq \lambda\}$$

Weyl's Law

$$N_D(\lambda) \simeq C \lambda^{\frac{\dim M}{2}}, \quad \lambda \to \infty$$

D Laplace operator on M

ightharpoonup Exist ϕ_n, λ_n

$$D\phi_n = \lambda_n \phi_n \quad \phi_n \quad \text{orthonormal basis for } L^2(M)$$

- \triangleright λ_n have finite multiplicity
- Order $0 \le \lambda_1 \le \lambda_2 \le \dots$

$$N_D(\lambda) := \#\{\lambda_i | \lambda_i \leq \lambda\}$$

Weyl's Law

$$N_D(\lambda) \simeq C \lambda^{\frac{\dim M}{2}}, \quad \lambda \to \infty$$

First term in expansion of e^{-tD}

Spectral Theory

- ▶ D, ϕ_n, λ_n as before
- ightharpoonset F a function on $\mathbb R$

Spectral Theory

- ▶ D, ϕ_n, λ_n as before
- ightharpoonup F a function on \mathbb{R}
- ▶ Functional Calculus $F \rightarrow F(D)$

$$F(D)\phi_n := F(\lambda_n)\phi_n.$$

- Smoothing operator $\Psi^{-\infty}(M)$:
 - $T: D'(M) \to \mathcal{C}^{\infty}(M)$
 - T has a smooth kernel
- Implecation of Weyl's Law

$$F \in S(\mathbb{R}) \Longrightarrow F(D) \in \Psi^{-\infty}(M)$$

Approximate units: Functoriality

- ▶ $F(x) \in S(\mathbb{R})$
- F(0) = 1

Approximate units: Functoriality

- ▶ $F(x) \in S(\mathbb{R})$
- F(0) = 1
- $ightharpoonup u \in D'(M)$

$$F_{\varepsilon}(D)u \to u \quad \text{in } D'(M).$$

• Question What properties of u can be recovered from the approximation $F_{\varepsilon}(D)u$?

Zeroth model of generalized functions

- $\tilde{\mathcal{G}}(M) = \{ \varepsilon \to \gamma_{\varepsilon} \in \mathcal{C}^{\infty}(M) \}$ Generalized functions= Curves in a Frechét space.
- ▶ A distribution u represented by $F_{\varepsilon}(D)u$

$$i_F: D'(M) \to \tilde{\mathcal{G}}(M).$$

Zeroth model of generalized functions

- $\tilde{\mathcal{G}}(M) = \{ \varepsilon \to \gamma_{\varepsilon} \in \mathcal{C}^{\infty}(M) \}$ Generalized functions= Curves in a Frechét space.
- ▶ A distribution u represented by $F_{\varepsilon}(D)u$

$$i_F: D'(M) \to \tilde{\mathcal{G}}(M).$$

- Drawbacks
 - non-unique hence non cannonical representation of distribution
- ▶ Control asymptotic growth of the curve γ_{ε} Historically Guillemin-Sternberg in 'Geometric Asymptotics'

Asymptotics

- X a Frechét space.
- ▶ $\mathcal{G}^{\infty}(X)$ curves $(0,1) \ni \varepsilon \to \gamma_{\varepsilon} \in X$ such that There exists a fixed N in \mathbb{Z}

any seminorm
$$\rho \to \rho(\gamma_{\varepsilon}) \sim \mathcal{O}(\varepsilon^N)$$
.

 $\blacktriangleright \ \mathcal{G}^{\infty}(M) := \mathcal{G}^{\infty}(\mathcal{C}^{\infty}(M))$

Asymptotics

- X a Frechét space.
- ▶ $\mathcal{G}^{\infty}(X)$ curves $(0,1) \ni \varepsilon \to \gamma_{\varepsilon} \in X$ such that There exists a fixed N in \mathbb{Z}

any seminorm
$$\rho \to \rho(\gamma_{\varepsilon}) \sim \mathcal{O}(\varepsilon^{N})$$
.

 $\blacktriangleright \ \mathcal{G}^{\infty}(M) := \mathcal{G}^{\infty}(\mathcal{C}^{\infty}(M))$

Theorem

If Schwartz function $F \equiv 1$ near the origin

$$F_{\varepsilon}(D)(D'(M))\cap \mathcal{G}^{\infty}(M)=F_{\varepsilon}(D)(\mathcal{C}^{\infty}(M)).$$

Wavefront Set

- Wavefront sets= singularity directions of a distribution
- P pseudo-differential operator order 0.
- ▶ char $P \subset S^*M := \sigma_P^{-1}\{0\}$

$$WF(u) := \bigcap_{Pu \in \mathcal{C}^{\infty}(M)} \operatorname{char} P.$$

• generalize this to curves in $\mathcal{C}^{\infty}(M)$

Wavefront Set

- Wavefront sets= singularity directions of a distribution
- P pseudo-differential operator order 0.
- ▶ char $P \subset S^*M := \sigma_P^{-1}\{0\}$

$$WF(u) := \bigcap_{Pu \in \mathcal{C}^{\infty}(M)} \operatorname{char} P.$$

• generalize this to curves in $\mathcal{C}^{\infty}(M)$

$$\mathit{WF}_g(\gamma_arepsilon) := igcap_{P\gamma_arepsilon \in \mathcal{G}^\infty(M)} \operatorname{char} P.$$

Wavefront Set

- Wavefront sets= singularity directions of a distribution
- P pseudo-differential operator order 0.
- ▶ char $P \subset S^*M := \sigma_P^{-1}\{0\}$

$$WF(u) := \bigcap_{Pu \in \mathcal{C}^{\infty}(M)} \operatorname{char} P.$$

• generalize this to curves in $\mathcal{C}^{\infty}(M)$

$$WF_g(\gamma_{\varepsilon}) := \bigcap_{P\gamma_{\varepsilon} \in \mathcal{G}^{\infty}(M)} \operatorname{char} P.$$

Theorem

Set $T_{\varepsilon} = F_{\varepsilon}(D)$ for $F \equiv 1$ near the origin:

$$WF_g(T_{\varepsilon}u) = WF(u).$$

Colombeau Algebra

- ▶ To summarize
 - ▶ Regularizations $T_{\varepsilon} = F_{\varepsilon}(D)$ with $F \equiv 1$ near origin.
 - Easy algorithm to obtain WF.

Colombeau Algebra

- To summarize
 - ▶ Regularizations $T_{\varepsilon} = F_{\varepsilon}(D)$ with $F \equiv 1$ near origin.
 - Easy algorithm to obtain WF.
- ▶ But curiously for any seminorm ρ on $C^{\infty}(M)$:

$$\rho(T_{\varepsilon}f - f) \sim O(\varepsilon^N) \quad \forall \ N \in \mathbb{Z}$$

Colombeau Algebra

- To summarize
 - ▶ Regularizations $T_{\varepsilon} = F_{\varepsilon}(D)$ with $F \equiv 1$ near origin.
 - Easy algorithm to obtain WF.
- ▶ But curiously for any seminorm ρ on $C^{\infty}(M)$:

$$\rho(T_{\varepsilon}f - f) \sim O(\varepsilon^N) \quad \forall \ N \in \mathbb{Z}$$

Set

$$\begin{aligned} & \textit{M} := & \{ \gamma_{\varepsilon} | \rho(\gamma_{\varepsilon}) \sim \textit{O}(\varepsilon^{\textit{m}}) \; \textit{m} \; \text{depands on seminorm} \; \; \rho \} \\ & \textit{N} := & \{ \gamma_{\varepsilon} | \rho(\gamma_{\varepsilon}) \sim \textit{O}(\varepsilon^{\textit{m}}) \; \forall \; \textit{m} \; \} \end{aligned}$$

Imposibility result

- ► There is no commutative algebra A
- with a linear embedding $\tau:D'(M)\to \mathcal{A}$ such that $\tau|_{\mathcal{C}^k(M)}$ is an algebra morphism. $k=0,1,2\dots$
- Noted by Schwarts in an attempt to introduce nonlinear structure on D'(M).

Imposibility result

- ► There is no commutative algebra A
- with a linear embedding $\tau:D'(M)\to \mathcal{A}$ such that $\tau_{|_{\mathcal{C}^k(M)}}$ is an algebra morphism. $k=0,1,2\dots$
- Noted by Schwarts in an attempt to introduce nonlinear structure on D'(M).

However:

$$F_{\varepsilon}(D):D'(M)\to M/N$$

is algebra isomorphsim restricted to $C^{\infty}(M)$.

▶ G(M) := M/N Colombeau algebra.

Frechét Techiniques

- More canonical representations are possible:
- $X = \Psi^{-\infty}(M)$ and $Y = \mathcal{C}^{\infty}(M)$

$$D'(M) \ni u \rightarrow \Theta_u : X \rightarrow Y$$

 $\Theta_u(T) := T(u)$

'pause

Theorem

There exists Frechét grading on $\Psi^{-\infty}(M)$ and $\mathcal{C}^{\infty}(M)$ such that

$$u \in H^s(M) \leftrightarrow \Theta_u$$
 has tameness $-k$

Modelling geophysics

- ▶ *M* be the Earth, *S* the surface of earth.
- ▶ p(x) be inverse of speed of propagation of material waves at a point inside M
- Find p(x)?

Modelling geophysics

- ▶ *M* be the Earth, *S* the surface of earth.
- p(x) be inverse of speed of propagation of material waves at a point inside M
- ► Find *p*(*x*)?

$$(p(x)\partial_t^2 + \Delta)u(x,t) = \delta_0(x,t)$$

$$u(x,t) = 0 \ t < 0$$

Find inverse of the operator A

$$A(p(x))=u(x,t)_{|_{S}}$$

► The linearization DA is a Fourier Integral operator when p(x) is smooth

Geodesics in distributional meterics

- Lorentzian meterics of low regularity
- Geroch-Traschen defined distributional meterics so that curvature is well defined.
- What are the geodesics?

Geodesics in distributional meterics

- Lorentzian meterics of low regularity
- Geroch-Traschen defined distributional meterics so that curvature is well defined.
- What are the geodesics?
- Steinbauer-Vickers, Kunzinger-Steinbauer-Vickers at al Provide sensible notiona of geodesic equations for distributional Lorentzian meterics